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For over a decade, p130Cas/BCAR1, HEF1/NEDD9/Cas-L, and Efs/Sin have defined the Cas (Crk-associated substrate)
scaffolding protein family. Cas proteins mediate integrin-dependent signals at focal adhesions, regulating cell invasion
and survival; at least one family member, HEF1, regulates mitosis. We here report a previously undescribed novel branch
of the Cas protein family, designated HEPL (for HEF1-Efs-p130Cas-like). The HEPL branch is evolutionarily conserved
through jawed vertebrates, and HEPL is found in some species lacking other members of the Cas family. The human
HEPL mRNA and protein are selectively expressed in specific primary tissues and cancer cell lines, and HEPL maintains
Cas family function in localization to focal adhesions, as well as regulation of FAK activity, focal adhesion integrity, and
cell spreading. It has recently been demonstrated that upregulation of HEF1 expression marks and induces metastasis,
whereas high endogenous levels of p130Cas are associated with poor prognosis in breast cancer, emphasizing the clinical
relevance of Cas proteins. Better understanding of the complete protein family should help inform prediction of cancer
incidence and prognosis.

INTRODUCTION

The Cas (Crk-associated substrate) scaffolding protein fam-
ily contains three defined members: p130Cas/BCAR1 (Sakai
et al., 1994; Brinkman et al., 2000); HEF1/Cas-L/NEDD9
(Kumar et al., 1992; Law et al., 1996; Minegishi et al., 1996),
and Efs/Sin (Ishino et al., 1995; Alexandropoulos and Balti-
more, 1996). Elevated expression of p130Cas/BCAR1 has
been linked to poor prognosis in breast cancer (van der Flier
et al., 2000), whereas overexpression of HEF1/NEDD9/
Cas-L recently been found to potently induce metastatic
melanoma (Kim et al., 2006). Mechanistically, the best-stud-
ied functions of the Cas family proteins include regulation of
attachment-dependent survival signaling or anoikis and reg-
ulation of cell motility and invasion, although there is evi-
dence for additional roles for some of these proteins in
control of cell cycle, growth factor signaling, cell differenti-
ation, and bacterial and viral infection (reviewed in Defilippi
et al., 2006; Singh et al., 2007). These many functions reflect
the ability of the Cas proteins to interact with multiple
partner proteins, as the predominant structural feature of
Cas proteins is their possession of numerous protein inter-
action domains (discussed in O’Neill et al., 2000), allowing
them to act as scaffolding proteins for different functional
complexes.

An important current issue in understanding cancer
pathogenesis is that of why different oncogenes and tumor
suppressors are selectively targeted in tumors arising from
different tissue sources. For example, although elevation of
HEF1/Cas-L/NEDD9 induces metastasis in melanomas, re-
duced levels of the same gene have been reported in breast

cancers that metastasize aggressively to the lung (Minn et
al., 2005; see also O’Neill et al., 2007 for discussion). Un-
doubtedly, the differing physiology and complement of
expressed genes in differing precursor cell types imposes
distinct requirements for the type of genetic or epigenetic
change required to make a cell cancerous. For protein
families, another relevant issue is likely to be that for a
given cell type, the expression of one family member may
condition the impact of modulating the expression of a
paralogous family member with overlapping biological
activities. The complexity of cellular signaling networks
currently emerging through systems-level analysis (Mak
et al., 2007) emphasizes the importance of exactly defining
the composition, expression, and functional properties of
protein family groups.

In this study, we have identified a previously unreported
but evolutionarily conserved member of the Cas group,
which we have termed HEPL (HEF1-Efs-p130Cas-like). We
show that the HEPL mRNA and protein are expressed in
cultured cell lines and tumors, and that HEPL has biological
activities similar to those of other family members in influ-
encing cell attachment and movement. The identification of
HEPL provides an important context for further studies of
this increasingly important protein group.

MATERIALS AND METHODS

Genomic and Structural Analysis of the Cas Protein
Family
Details of sequence collection and processing are provided in the legend to
Supplementary Figure 1. Dendrograms showing family relationships were
displayed using the Treeview program. The HEPL SH3 domain was modeled
using as template the high-resolution crystal structure (1.1Å) of the SH3
domain of p130Cas (PDB code 1WYX; Wisniewska et al., 2005). The rat
p130Cas structure (PDB code 1Z23 (Briknarova et al., 2005) was used to model
the four-helix bundle region. Homology modeling was initiated using a
multiple-round PSI-BLAST (Altschul et al., 1997) sequence search using HEPL
and p130Cas sequences to build profiles. The profiles were used to identify
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suitable templates in the Protein Data Bank (PDB; Berman et al., 2000). The
profile/template match was refined using secondary structure predictions
from PSIPRED (Jones, 1999). Conserved backbone and side chain residues
were copied from the template structure, whereas divergent residues were
rebuilt using SCWRL3 (Canutescu et al., 2003). LOOPY (Xiang et al., 2002) was
used to build loops at points of insertion and deletion. Molecular graphics
and 3D structural manipulation was performed using Chimera (Pettersen et
al., 2004). The Cas multiple sequence alignment was overlaid with secondary
structure prediction rendered by MolIDE (Canutescu and Dunbrack, 2005).

Quantitative Real-Time PCR Assays
Total RNA was isolated using an RNeasy kit (Qiagen, Chatsworth, CA).
Contaminating DNA was removed using TURBO DNA-free (Ambion, Austin,
TX). RNA was quantified using the Agilent 2100 BioAnalyzer (Agilent Tech-
nologies, Santa Clara, CA) in combination with a RNA 6000 Nano LabChip
(Agilent Technologies). See Supplementary Tables 1 and 2 for technical details
of PCR assays. Ambion’s First Choice human total RNA survey panel was
used as a source of RNA from 20 different normal tissues.

HEPL Plasmids and Small Interfering RNA and Cell
Culture
HEPL was cloned using conventional molecular biology techniques by com-
bining sequences from Human MGC verified full-length cDNA (Clone
5205865, Open Biosystems, Huntsville, AL) and human genomic DNA. Hem-
agglutinin (HA)-epitope tagged HEF1, HEPL, FAK, and negative controls
(empty vector or � BioB, an extensively truncated Escherichia coli BioB) were
expressed from pcDNA3.1-6HA for transfections. Cell lines were cultured
under standard conditions, in DMEM or in RPMI-1640 plus 10% fetal bovine
serum (FBS) supplemented with antibiotics, as specified by the ATCC (Man-
assas, VA). Scrambled (control) small interfering (siRNA) and siRNA du-
plexes against HEPL (NM_020356) and HEF1 were made by Dharmacon
Research (Lafayette, CO). HEPL-directed siRNAs were used both as a Smart-
pool and four individual deconvoluted sequences, as described in Results.
Plasmid transfections were done using LipofectAMINE-Plus reagent (Invitro-
gen, Carlsbad, CA) and siRNA transfections using the Cell Line Nucleofector
Kit V from Amaxa Biosystems (Gaithersburg, MD).

Antibodies and Immunoprecipitation
Rabbit polyclonal antibody to HEPL was generated using a peptide corre-
sponding to HEPL amino acids 773-786 (by Zymed Laboratories, San Fran-
cisco, CA). Antibody was purified from sera using the NAb Protein A Spin
Purification Kit (Pierce Biotechnology, Rockford, IL). Other antibodies in-
cluded anti-HA mAb (Santa Cruz Biotechnology, Santa Cruz, CA), anti-
paxillin and anti-p130Cas (BD Transduction Laboratories, Carlsbad, CA),
anti-HEF1 (2G9; Pugacheva and Golemis, 2005), anti-FAK[pY397] (Biosource,
Nevelle, Belgium), anti-gelsolin (BD Biosciences, San Jose, CA), Alexa Fluor
488– and 568–conjugated anti-mouse (Molecular Probes, Eugene, OR), and
anti-mouse and anti-rabbit IgG antibodies conjugated to HRP (Amersham
Biotech, Buckinghamshire, England). For immunoprecipitations, transfected
cells were lysed in M-PER Mammalian Protein Extraction Reagent (Pierce
Biotechnology) and immunoprecipitated with either anti-HA or anti-HEPL
Abs, using Immobilized Protein A/G Agarose (Pierce Biotechnology). To
establish HEPL and FAK interaction, HA-epitope tagged HEF1, HEPL, FAK,
and negative control (� BioB, an extensively truncated E. coli BioB) were
expressed from pcDNA3.1-6HA for transfections in 293T cells and immuno-
precipitated with anti-FAK mAb, clone 4.47 (Millipore, Bedford, MA).

To study cell adhesion–dependent tyrosine phosphorylation, trypsinized
HOP-62 cells were either maintained in suspension in serum-free medium for
45 min at 37°C or subsequently were replated on fibronectin (4 �g/cm2;
Chemicon International, Temecula, CA)-coated dishes for 30 min. Experi-
ments were performed in parallel in the presence or absence of 10 �M PP2
(Calbiochem, San Diego, CA). Cell lysates were prepared using M-PER Mam-
malian Protein Extraction Reagent supplemented with protease inhibitors and
Halt Phosphatase Inhibitor Cocktail (Pierce Biotechnology), immunoprecipi-
tated with antibodies to HEPL or HEF1, and immunoblotted with anti-
phosphotyrosine mAb (BD Transduction Laboratories).

Yeast Two-Hybrid Analysis
The modified Interaction Trap form of two-hybrid system was used to study
HEPL protein interactions, using reagents and approaches as described in
(Serebriiskii et al., 2002). The LexA-fused HEPL SH3 domain (aa 1-148) was
used to assess interactions with B42 activation domain-fused FAK C-terminus
(aa 688-997). LexA fused to the SHC PTB domain and to a B42-�BioB, and
B42-fused Raf and B42-�BioB were used as nonspecific negative controls.
Expression of all protein fusions was analyzed by Western blot.

Immunofluorescence, Cell Spreading, Cell Migration, Cell
Size, Cell Cycle, and Apoptosis Assays
Cells were fixed in 4% paraformaldehyde for 10 min, permeabilized in 0.2%
Triton X-100 for 5 min and blocked with 3% BSA in PBS. After incubation with

primary antibodies, cells were stained with either Alexa Fluor 488– or 568–
conjugated secondary antibodies. Epifluorescence microscopy was performed
using an inverted Nikon TE300 microscope (Melville, NY). Confocal micros-
copy was performed using a Radiance 2000 laser scanning confocal micro-
scope (Carl Zeiss, Thornwood, NY). All images were acquired as 12-bit
images with a Spot RT monochrome camera (Diagnostic Instruments, Sterling
Heights, MI). For cell spreading analysis, cells were transfected with indicated
plasmids or siRNAs for 18–48 h before fixation, as indicated. Anti-paxillin
mAb was used to mark focal adhesions and outline cells. Cell area measure-
ments were made using MetaMorph or MetaVue software (Molecular De-
vices, Universal Imaging, Downingtown, PA) software to score pixels within
cell perimeters.

To measure motility, movement of siRNA-treated HOP62 cells plated in
six-well tissue culture dishes was monitored with a Nikon TE300 microscope
using 10� NA 0.25 PlanA objective, and images were collected with CCD
video camera (Roper Scientific, Trenton, NJ) at 20-min intervals over a 12-h
period and then digitized and stored as image stacks using MetaMorph
software. Velocity and persistence of migratory directionality (D/T) were
determined by tracking the positions of cell nuclei using the Track Point
function of MetaMorph.

Apoptosis was measured using an APOPercentage apoptosis assay kit
(Biocolor, Belfast, Northern Ireland, United Kingdom) and Western blot to
measure appearance of cleaved gelsolin. Cell cycle compartmentalization was
measured using a Guava Personal Cell Analysis (PCA) System (Guava Tech-
nologies, Hayward, CA). Treatment for 48 h with 200 �M etoposide (Sigma-
Aldrich, St. Louis, MO) or 10 nM dasatinib (a gift of Dr. Andrew Godwin) was
used as positive control for apoptosis assays. All calculations of statistical
significance were made using the GraphPad InStat software package (San
Diego, CA) and STATA software (StataCorp, College Station, TX). Ap-
proaches included unpaired t tests, ANOVA analysis, and generalized linear
models estimated using generalized estimating equations (GEE).

RESULTS

Prediction of a New Cas Family Member, HEPL
Using the p130Cas, HEF1, and Efs protein and mRNA
sequences in reiterative BLAST analysis against genomic
sequences and EST resources, we searched for Cas-related
sequences in an evolutionarily diverse group of organisms
(Figures 1, A and B), and Supplementary Figure 1). No
protein strongly related to the Cas family was identified in
Saccharomyces cerevisiae or Caenorhabditis elegans, whereas a
single ancestral family member was detected in arthropods,
echinoderms, and primitive chordates. The family branches
in gnathostomes to produce the three previously character-
ized mammalian family members. Unexpectedly, we de-
tected a completely novel member of the Cas family that was
conserved as an ortholog group from gnathostomes through
mammals. We have designated this ortholog group as
HEPL. Dendrogram analysis indicates that the HEPL does
not diverge at a significantly more rapid rate than other Cas
branches, suggesting that it maintains a biological function,
rather than representing a pseudogene (Figure 1B).

Human HEPL localizes to chromosome 20q13.31 and is
annotated in Unigene as C20orf32. Comparison of the hu-
man HEPL protein sequence with the other three human Cas
family members (Supplementary Figure 1) shows overall
identity with other family members up to 26% and similarity
up to 42%. Human HEPL is 786 amino acids (aa), versus 870
aa for p130Cas, 834 aa for HEF1, and 561 aa for Efs. For the
three well-studied Cas proteins, a highly conserved amino-
terminal SH3 domain is followed by a moderately conserved
region encompassing multiple SH2-binding sites, a serine-
rich region shown to encompass a four-helix bundle in
p130Cas (Briknarova et al., 2005), and a well-conserved car-
boxy-terminal domain that contributes to focal adhesion
targeting (Nakamoto et al., 1997; Harte et al., 2000; O’Neill
and Golemis, 2001; Figure 1C). Although the HEPL proteins
maintain a recognizable SH3 domain, this domain has the
lowest overall similarity to other SH3 domains in the Cas
group. Human HEPL has a limited number of candidate
SH2-binding sites, in contrast to p130Cas and HEF1. The
HEPL carboxy-terminus has a short region of detectable Cas
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family homology (res �670 to the carboxy-terminus), but
otherwise lacks obvious similarity at the level of primary
sequence. Flanking the carboxy-terminal domain, HEPL also
lacks a YDYVHL sequence conserved among the other three
Cas family proteins (bold, Supplementary Figure 1) that is

an important binding site for the Src SH2 domain (Tachi-
bana et al., 1997), possibly suggesting reduced functionality.

To better assess whether the predicted HEPL proteins
maintain important features of the Cas family, we used
molecular modeling to compare the Cas proteins based on

Figure 1. Definition of Cas family members. (A) Phylogenetic
tree of bilateralia (only branches relevant to analysis detailed;
dotted lines indicated intermediate branching not shown). Arrow
1, emergence of Cas ancestor, arrow 2, emergence of 4 family
members (�500 million years ago). (B) Cas protein dendrogram
indicating rate of divergence. All sequences analyzed were full
length. Dm, Drosophila melanogaster; Dp, Daphnia pulex (daphnia);
Am, Apis mellifera (bee); Sp, Strongylocentrotus purpuratus (sea ur-
chin); Dr, Danio rerio (zebrafish); Tn, Tetraodon nigroviridis (puffer-
fish); Xl, Xenopus laevis; Gg, Gallus gallus (chicken); Bt, Bos taurus
(cow); Md, Monodelphis domestica (opossum); Cf, Canis familiaris
(dog); Mm, Mus musculus (mouse); Rn, Rattus norvegicus (rat);
MAm, Macaca mulatta (macaque); Pt, Pan troglodytes (chimpanzee);
Hs, Homo sapiens. (C) Domain structure of Cas family proteins,
including SH3 domain (SH3) preceded by a short region with no
defined functional elements (black box), SH2-binding site rich
domain (SH2bd), serine-rich region encompassing �-helices (in
p130Cas; SRR), and conserved C-terminal (C-term) domain.

HEPL, a Fourth Cas Family Member

Vol. 19, April 2008 1629



predicted secondary and tertiary structure, using structures
of p130Cas as templates (Briknarova et al., 2005; Wisniewska
et al., 2005). Figure 2A demonstrates that HEPL and p130Cas
are predicted to fold almost identically within the SH3 do-
main. Further, despite only 28% primary sequence identity,
the predicted secondary structure for residues 432-591 of
HEPL is extremely similar to that for residues 449-610 for
p130Cas, implying a well-conserved fold (Figure 2B). At
present, no adequate template exists in PDB to create a
tertiary model for the Cas carboxy-terminus. However, com-
parison of the predicted secondary structure for the four Cas
proteins reveals a strikingly similar periodicity of � -helices
and �-sheets (Figure 2C) that is again compatible with the
idea of a conserved tertiary structure.

Expression of Endogenous HEPL
The evolutionary conservation of HEPL suggested that it
encoded a functional protein product rather than an unex-
pressed pseudogene. To test this directly, we first used
quantitative RT-PCR to analyze HEPL expression in mRNAs
prepared from 20 human tissues (Figure 3A). HEPL was
most abundant in lung and spleen and was detected at lower

levels in additional tissues. These results were in accord
with online resources in NCBI/Unigene (Wheeler et al.,
2004) that estimate the relative abundance of mRNAs based
on their frequency of isolation in sequencing of tissue-spe-
cific libraries (results not shown). We next used quantitative
RT-PCR to analyze mRNAs prepared from a panel of com-
monly used laboratory cell lines derived from diverse cell
lineages (but enriched in carcinomas and leukemias, in ac-
cord with the expression prediction), to establish the general
abundance of HEPL mRNA in cultured cells.

HEPL mRNA was detected in the majority of the cell lines
(15 of 26), with highest levels of HEPL in the leukemia and
ovarian cell lines (Figure 3B). As reference, HEF1 and
p130Cas were readily detected in most of the cell lines
examined, although p130Cas was not detected in most of the
lymphoma/leukemia cell lines analyzed. In contrast, al-
though very abundant in one breast carcinoma cell line
(T47D), the Efs mRNA was only detected in 6 of the 26 cell
lines assessed. Because increased expression of some Cas
proteins has been linked to cancer progression, we investi-
gated the relative expression of HEPL mRNA in a series of
normal primary human ovarian surface epithelial (HOSE)

Figure 2. Modeled secondary and tertiary structure of Cas domains. (A) Superposition of a model of the SH3 region of human HEPL with
the crystal structure of the same domain from p130Cas. The HEPL sequence alignment with the template had an e value of 4.00e�32, 52%
sequence identity, 70% positives, and no gaps, comprising residues 13-79 (3-69 in the template sequence). The backbone is shown in green
for both proteins. For the side chains, oxygen atoms are red and nitrogen atoms are blue. Carbons in p130Cas are purple and carbons in HEPL
are green. (B) Superposition of models of the serine-rich region of human p130Cas (purple ribbon) and human HEPL (green ribbon). HEPL
alignment with the template showed an e value of 7.00e�53, 28% sequence identity, 48% positives, 8% gaps and contained the 432-591 residue
range (4-161 in the template). Because the p130Cas and HEPL helix regions are highly similar, only the HEPL ribbons are shown. Two
divergent loop regions are shown with side chains. Oxygen atoms are red and nitrogen atoms are blue. Carbons in p130Cas are purple and
carbons in HEPL are white. (C) Predicted Cas family carboxy-terminal secondary structure. Red bar, predicted helical regions (with lighter
shades corresponding to lower certainty of prediction); green bar, � -sheets; gray bar, ambiguous.
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cells, human SV40-immortalized ovarian (HIO) cell lines,
and primary ovarian tumor tissue (Figure 3C). From this
preliminary analysis, HEPL mRNA expression levels did not
correlate significantly with ovarian transformation status.

To analyze HEPL at the protein level, we cloned the gene
and prepared antibody against HEPL-derived peptide se-
quences that specifically recognized overexpressed epitope-

tagged HEPL (Figure 3D). Using this antibody, we have
found that HOP-62, K562, and SR, cell lines predicted by
mRNA analysis to contain relatively abundant levels of
HEPL, contained a protein species of �105 kDa, whereas
lower levels of a similarly migrating species are detected in
a number of other cell lines (Figure 3E). This species was
removed by treatment of cells with an siRNA targeted to
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HEPL (Figure 3F). Together, these data indicate that HEPL is
a bona fide new member of the Cas family. Based on our
analysis to date, antibodies to the more widely studied Cas
family members p130Cas and HEF1 do not cross-react with
HEPL (Figure 3G), suggesting the presence of HEPL may
mask phenotypes associated with depletion of other family
members.

HEPL Conserves Cas Family Functions in FAK Regulation
and Cell Spreading
The best-defined action of Cas family proteins is as intermedi-
ates in integrin-dependent attachment signaling, regulating cell
attachment, spreading, and migration. Although antibody to
endogenous HEPL worked poorly in immunofluorescence

analysis, HA-HEPL transfected into MCF7 cells (which
express a low level of HEPL mRNA) colocalized with
paxillin at focal adhesions (Figure 4A), comparable to
other Cas proteins. HA-HEPL–transfected cells spread to
a greater degree than control or vector-transfected cells,
but to a lesser degree than cells transfected with HA-
HEF1 (Figure 4B). Also suggesting a less potent action for
HA-HEPL than HA-HEF1, levels of Y397-phosphorylated
(activated) FAK were strongly increased at focal adhe-
sions in HA-HEF1 cells. Interestingly, in HA-HEPL trans-
fected cells, only a subpopulation of the cells (�15–20%)
showed increased levels of Y397-phosphorylated FAK,
whereas the remainder of the population remained at the
levels of the negative control cells (Figure 4C).
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Figure 5. Depletion of HEPL influences FAK activation, cell spread-
ing, and motility. (A) Relative spreading (expressed in pixels) in cells
transfected with siRNA to HEPL, HEF1, or scrambled control (Scr).
Bars, SE. **p � 0.01; ***p � 0.001; ns, nonsignificant (p � 0.05). HEPL-
depleted cells staining weakly (20%) or more intensely (80%) for Y397-
FAK are presented grouped, and separately. For this and subsequent
panels in this figure, a Dharmacon Smartpool containing four HEPL
targeting siRNAs was used. We have separately confirmed results using
individual deconvoluted siRNAs to HEPL (Supplementary Figure 2)
and shown that siHEPL1 and siHEPL4, but not siHEPL2 and siHEPL3,
deplete HEPL and generate equivalent results. (B and C) Confocal
images of HOP62 cells transfected with siRNA to HEPL, HEF1, or
scrambled control (Scr) were stained with antibody to Y397-FAK (B) or
paxillin (C). Two different representative HEPL-depleted cells, corresponding to the 20 and 80% phenotypes, are shown. All scale bars, 20
�m. (D) The migration of individual cells was tracked in movies taken from 36 to 48 h after treatment with siRNAs as indicated. Cells were
binned into different groups based on average velocity over 12 h. For each group �80 cells were analyzed in two independent experiments.
(E) The ability of siRNA-treated cells to maintain directional movement was calculated from the movies analyzed in D. D/T indicates the
average radial distance (D) individual siRNA-treated cells move from position at the beginning of the assay in comparison to the total (T)
distance the cells move during the period of observation. ***p � 0.001; other values not significant versus Scr. (F) Proliferation of K562 cells
treated with siRNA to HEPL (siHEPL) or control scrambled (Scr) siRNA, as assessed by Alamar blue staining 1, 2, or 3 d after depletion, with
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Our modeling experiments had suggested that the HEPL
SH3 domain would bind FAK (Figure 2A). Using a two-
hybrid approach, we confirmed a direct interaction between
the HEPL SH3 domain and the FAK C-terminus (Figure 4D).
This result paralleled previous demonstrations of interac-
tions between the HEF1 and other Cas family SH3 domains
with proline-rich SH3 domain–binding motifs in this region
(Polte and Hanks, 1995; Law et al., 1996) and suggested that
overexpressed HEPL activates FAK based on direct interac-
tion. Finally, like HEF1, full-length HEPL was immunopre-
cipitated with antibody to FAK from cells transfected with
plasmids expressing each protein (Figure 4E). A common
characteristic of Cas family proteins is their phosphorylation
by Src family kinases during the cell attachment process,
which provides a docking site for FAK and contributes to
assembly of signaling complexes at focal adhesions (O’Neill
et al., 2000). HEPL lacks the YDYVHL site that coordinates
docking with the Src SH2 domain for other family members
(Tachibana et al., 1997). Nevertheless, attachment-induced
Src phosphorylation of HEPL was observed (Figure 4F),
suggesting that additional interactions between HEPL, FAK,
and Src are sufficient to drive this modification.

We next analyzed focal adhesions and cell spreading in
HOP-62 cells from which HEPL had been depleted by
siRNA (Figure 5A). In the total population of siRNA trans-
fected cells, HEPL depletion reduced cell spreading (p �
0.01), although to a significantly smaller degree than HEF1
depletion (p � 0.001). On closer inspection, the HEPL-de-
pleted population differed from both scrambled siRNA con-
trol- and HEF1-depleted cells in its heterogeneous nature. A
subpopulation of �20% of HEPL-depleted cells showed re-
duced and/or differentially localized staining for Y397-phos-
phorylated FAK (Figure 5B), with residual staining diffusely
distributed at the cell periphery rather than in discrete focal
adhesions. Subsequent staining with antibody to paxillin
(Figure 5C) revealed a similar population of �20% of cells
that had greatly reduced paxillin staining. Reanalyzing
spreading data for strongly versus weakly Y397-FAK stain-
ing HEPL-depleted cells (Figure 5A) revealed a clear segre-
gation of weak staining with reduced spreading. By contrast,
almost all cells with depleted HEF1 were less spread than
Scr control cells and had reduced Y397-phosphorylated FAK,
to the same degree as the 20% of responsive HEPL-depleted
cells.

An important function of Cas proteins is regulation of cell
migration (Klemke et al., 1998; van Seventer et al., 2001;
Fashena et al., 2002). Analysis of live cell images of HEPL- or
HEF1-depleted cells indicated that depletion distorted mi-
gration profiles relative to Scr-depleted controls. HEF1 de-
pletion uniformly reduced cellular velocity (p � 0.001, Fig-
ure 5D). Interestingly, the phenotype observed with HEPL

depletion was more complex. Two distinct HEPL-depleting
siRNAs caused appearance of a population of slow-moving
cells, although for one of the siRNAs the effect was not
statistically significant (velocity �9 �m/h, p � 0.05 and p �
0.15). However, the HEPL-depleting siRNAs each also un-
expectedly caused appearance of a faster-moving (velocity
�18 �m/h) group of cells, corresponding to �15% of the
population (p � 0.05 and p � 0.02). Greater velocity has
been reported to be associated with greater cell spreading in
some cell types with manipulated Cas proteins (e.g., Fash-
ena et al., 2002) for HEF1 in MCF7 cells), although there are
examples of cell movement where a connection between
spreading and velocity is not observed (Friedl and Wolf,
2003). No “highly spread” population was detected with
HEPL-depleted cells (results not shown). As further differ-
ence from the Cas group, whereas depletion of HEF1 re-
duced directionality of movement of cells, no such effect was
seen with HEPL depletion (Figure 5E).

Some members of the Cas family, such as HEF1, also play
important roles in regulation of apoptosis and proliferation
(e.g., Law et al., 2000; O’Neill and Golemis, 2001; Pugacheva
and Golemis, 2005; Dadke et al., 2006). siRNA depletion of
HEPL from K562 cells led to a slightly slower accumulation
of cells over 3 days (Figure 5F), although the general com-
partmentalization of cells in the G1, S, and G2/M phases of
cell cycle was not significantly affected (Figure 5G). HEPL
depletion did not influence the level of apoptotic cells in the
population (Figure 5. H and I). As siRNA depletion rarely
exceeds 90–95%, a definitive determination that HEPL does
not affect cell cycle or apoptosis requires a gene knockout;
however, at present, the most demonstrable activity of
HEPL is at focal adhesions, as with p130Cas.

DISCUSSION

Although the Cas protein family has been studied for over a
decade, this study represents the first extensive examination
of the Cas proteins utilizing genomic resources. The newly
identified HEPL proteins define a legitimate novel branch of
the Cas family. HEPL proteins conserve important func-
tional domains required for interaction with FAK, for tar-
geting to focal adhesions, and for regulating cell spreading
and FAK activation. Although human HEPL is expressed in
a relatively limited subset of cell types relative to p130Cas
and HEF1, based on mRNA analysis it appears to be as
prevalent as Efs/Sin in cultured cell lines.

HEPL does not appear to be as biologically active as
HEF1, based on a number of criteria presented above. Par-
ticularly in control of FAK activation, only a minority of cells
respond either to overexpressed HEPL or to depleted HEPL,
under conditions where almost all cells respond to similarly
manipulated HEF1. siRNA depletion typically introduces
siRNA into �90% of cells, and our analysis of HEPL siRNA-
transfected cells confirmed �75% depletion in practice, ex-
cluding the trivial explanation of incomplete depletion.
Rather, we expect the difference may relate to cell-specific
variability in the intrinsic expression level of the additional
Cas family members within HOP-62 cells: single cell analy-
ses are beginning to demonstrate that this is an important
property governing average gene expression in cell popula-
tions (e.g., Levsky and Singer, 2003; Mar et al., 2006). We
propose that typically within cells expressing multiple Cas
family members, HEPL may make a minor contribution to
regulation of cell growth properties. Part of the reduced
biological activity of HEPL may arise from lack of a key
motif for Src recognition (YDYVHL; Tachibana et al., 1997).
We have shown that HEPL is still phosphorylated by Src

Figure 5 (cont). data represented using Tukey box-plots. Statistical
significance was assessed by use of a GEE-estimated model assum-
ing a Gamma distribution with log link and an exchangeable cor-
relation over time. (G) Guava analysis of cell cycle compartmental-
ization of Scr or siHEPL-transfected cells analyzed in F. Note that
the high percentage of cells in S is characteristic of K562 cells. (H)
Analysis of apoptosis in K562 cells treated with siRNA to HEPL or
control scrambled (Scr) siRNA, or with dasatinib as a positive
control. Apoptosis detected by Apoptag is reported in arbitrary
units (AU); difference between dasatinib and other samples is sta-
tistically significant (p � 0.001). (I) Western blot of full-length and
cleaved (**) gelsolin in cells transfected 3 d previously with Scr or
HEPL siRNA, or treated with dasatinib or etoposide as positive
controls to induce apoptosis. �-actin provides a loading control.
Similar results were obtained for PARP cleavage (not shown).

M. K. Singh et al.

Molecular Biology of the Cell1634



family kinases during cell attachment, suggesting this motif
is not essential for an interaction with Src, presumably be-
cause of the presence of multiple interaction interfaces join-
ing HEPL, FAK, and Src; however, Cas proteins also recip-
rocally contribute to Src activation in the attachment process
(e.g., Alexandropoulos and Baltimore, 1996), and this func-
tion may be limited.

Intriguingly, HEPL activity qualitatively differs from
other Cas proteins in at least one important way, in the
regulation of migration. Although loss or depletion of
p130Cas and HEF1 reduces cell migration (e.g., Natarajan et
al., 2006), HEPL depletion induced faster migration in at
least a subset of cells. The reason for this is so far unknown;
however, an intriguing possibility is that through possession
of some but not all Cas family functions, HEPL may weakly
oppose the action of other Cas family proteins via action as
a “dominant negative.” Particularly in a cell background
low in other Cas proteins, HEPL may be important. Hence,
it is important for experiments involving knockdown or
knockout of Cas family proteins to subsequently consider
HEPL status in interpreting phenotypes. Separately, for each
of the Cas proteins, some interacting partners have been
described unique to that family member; the interaction
profile of HEPL has not yet been explored, but may include
novel interactors and intracellular roles.

Intriguingly, the region of chromosome 20 encompassing
HEPL is included as an amplicon in many solid tumors
(Dessen et al., 2002). It is hence possible that as with p130Cas
and HEF1 (Singh et al., 2007), altered expression of HEPL
contributes to the pathogenesis of cancers or other diseases.
Our data demonstrate that HEPL overexpression is sufficient
to increase cell spreading and FAK activation, phenotypes
associated with increased tumor invasiveness. Based on its
expression profile, in nontransformed cells HEPL may be
most relevant to the normal function of the hematopoietic
system and the lung. As all the Cas proteins have the po-
tential to interact with multiple partner proteins, sometimes
in large complexes, the presence of additional family mem-
bers might also be expected to induce cell- and tissue–type
differences in complex assembly and stoichiometry. Clearly,
future studies of the Cas group should consider the possible
role of redundant HEPL function in evaluating knockdown,
knockout, or overexpression phenotypes. In sum, this study
suggests ample new ground for further investigation.
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